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Abstract 

Extinction effects in white-beam X-ray and neutron 
diffraction are considered following the formulation 
developed for monochromatic-beam diffraction by 
Becker & Coppens [Acta Cryst. (1974), A30,129-147]. 
In white-beam diffraction, a small deviation of the 
wavelength from the Bragg condition A2 is a variable 
which represents the line profile of the diffraction 
peaks, so that by using the new parameter A2 the 
theory is converted to one in white-beam diffraction. 
It is shown that for a convex crystal, primary extinction 
yp agrees with the results calculated already for mono- 
chromatic diffraction. The same relation is shown to 
hold in secondary extinction y,. It is concluded that 
extinction theory derived for monochromatic diffrac- 
tion is applicable without any modification in white- 
beam diffraction. 

1. Introduction 

Recently, crystal-structure studies using the white- 
beam diffraction method have taken a more and more 
important place because of the advance in energy- 
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dispersive solid-state X-ray detectors in X-ray diffrac- 
tion, and the increase in available pulsed-neutron 
sources in neutron diffraction. In order to obtain the 
structure factor I FI from the original data in white- 
beam diffraction, it is necessary to make wavelength- 
dependent corrections for the incident spectrum J"0(2), 
absorption and extinction. Although the correction 
methods of the former two terms seem to be established 
so far, there has not been much discussion about the 
extinction effect. As demonstrated by Niimura, 
Tomiyoshi, Takahashi & Harada (1975), however, the 
extinction effect is very important in white-beam 
diffraction because a wide range of wavelengths of the 
incident radiation, sometimes more than 1 A, is often 
used and, due to a 24 dependence of the integrated 
intensity, wavelength variation of the extinction effect is 
very large. 

The extinction theories proposed hitherto have been 
developed by assuming a monochromatic incident 
beam and there has not been much discussion about the 
application of the theories to a white-beam radiation 
experiment. The purpose of the present paper is to 
clarify this point. As the theory of extinction, the 
formulation developed by Zachariasen (1967) is widely 
used but it includes a mathematical mistake. Becker & 
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Coppen's (1974 - hereafter referred to as BC) 
treatments of extinction, which have basically the same 
formulation as that of Zachariasen, eliminate the 
mistake. For this reason, we tried to transform BC 
theory to white-beam diffraction. 

The symbols used in this paper are the same as those 
used in BC, in which they were summarized in the 
glossary, so we often use the symbols without any 
definition. We also use the suffix w for each quantity in 
white-beam diffraction to distinguish it from that used 
in monochromatic diffraction. 

2. T h e  features  o f  w h i t e - b e a m  d i f f rac t ion  

We now summarize the kinematical theory of diffrac- 
tion with the white-beam method. Let u ° and u ° be unit 
vectors along the incident and diffracted beams 
respectively in the case when the Bragg condition is 
exactly fulfilled (when the Bragg condition is not 
fulfilled the corresponding vectors are u 0 and u 
respectively). The Bragg condition is described by 

( 1 / i ) ( u  ° -  u °) = H, (1)  

where H is the reciprocal-lattice vector corresponding 
to a given reflection. In white-beam diffraction, the 
parameter by which the reciprocal space is scanned is 
the wavelength of the incident radiation, so we increase 
the wavelength from the Bragg wavelength ~, to A + A2 
and keep u0 ° and u ° vectors fixed. The diffraction vector 
S shown in Fig. 1 is then defined by 

1 1 
S --  I + A;L (u° - -  u°)  = H + ~ 6~, (2)  

where 6a/ i  is the deviation of the scattering vectorfrom 
H due to a small increase of the wavelength At;  its 
direction is along H and its magnitude is given by 

18xl = A)t,I HI = A2 2 sin 0/i ,  (3) 

where 0 is the Bragg angle. 

ao S 

Fig. 1. Bragg scattering in reciprocal space. When the wavelength, 
2 = 2d sin 0, is increased to 2 + A2 the scattering vector S varies 
along the reciprocal-lattice vector H. 

In white-beam diffraction a unit vector xa is defined 
in the --H direction, so e in general is defined by 

e = e~ x~ + e2 x2 + e2 %, (4) 

where e2 is a divergence angle of the diffracted beam 
from u ° in the diffraction plane, and e 3 is that 
perpendicular to the diffraction plane, and the 
definitions of e 2, e 3 are the same as defined in BC. 

The differences between the monochromatic- and 
white-beam diffractions appear only in the x~ (or xa) 
term without any other relations changed, so in the 
following we consider only the transformation of the 
parameter e a from e 1 in the theory of BC. 

The intensity of radiation scattered in the direction u 
is given by 

laFK i'lZ i <5) In(e) =J"0(2)  ~ exp(2ra'2 -I e.L) , (BC. 2) 

where 3"0(~, ) is a wavelength-dependent incident 
radiation spectrum but we assume that •0(2) is 
constant in the vicinity of the Bragg wavelength ~,, a is 
the scattering amplitude, F is the structure factor, K is 
the polarization factor, R 0 is the distance from crystal 
to counter and L is a lattice vector in the crystal. 

The power recorded in the counter Pk(AA) which 
depends only on the deviation of the wavelength from 
2, A2, is given by 

Pk(A).) = RE f f  Ik(e ) de2 de3. (6) 
(BC. 3) 

The diffracting cross section per unit volume and unit 
intensity is defined by 

aw(A1) = 3"o ' (2)v- '  ek(A2), (7) 
(BC. 4) 

where w denotes the quantity in white-beam diffraction 
and v the volume of the sample crystal. Q, the average 
scattering cross section oer unit volume of the crystal, 
is obtained by integration of aw(A1) over At: 

Qw = f aw(A1) dA~, = 2 sin E 0" (8) 

Q in monochromatic diffraction is given by 

Q 9) 
sin 20 (BC.(,i 

The last factors of (8) and (9) are known as the Lorentz 
factor. 

The extinction factor y is written as usual by 

3 = ,_~k y, (10) 
(ac. 7) 

and 

~ k  = f ~,,(A~) dA~, = Jo(;O va, (11) 
(BE. 6) 
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where 3 and "~k are integrated intensities in the real 
crystal and in the kinematical theory, respectively. 

3. Calculation ofo" 

The basic quantity to evaluate extinction effects is a, 
the diffracting cross section per unit volume and unit 
intensity. We now calculate this quantity in white-beam 
diffraction following the method given in Appendix C 
of BC assuming convex crystals: 

aw(d2) = Qw(V2/v)(2 sin 2 0/2 4) A(A2), (12) 
(BC. C1) 

I r A ( A 2 ) = f f d e 2 d s 3 ~  exp (2~/s. L/2) , (13) 
(BC. C2) 

where V is the unit-cell volume. 
Summation over the lattice points is replaced by the 

integral over the volume of the crystal. The axes 
{o91, ~2, co3} in real space are defined by the reciprocal 
frame {xa, x2, x3 } as shown in Fig. 2 which is different in 
a few aspects from Fig. 14 of BC. Thus A(A2) 
transforms to 

if /  A = V--- 3- dv dr '  exp [2rdc~(r 1 - r~) sin 0/2] 

+oo 

x I" exp [2~is2(r 2 - r~) sin 0/21 ds2 
- - 0 0  

+oo 

x j exp[2rde3(r3- r'3)/21 de3. (14) 
- - 0 0  

This integration is calculated according to the treat- 
ments of Appendix C of BC and as a final result, 
o'w(A2) is obtained as 

f sin2 nA2a w 
aw(A2)= Qw dva w (15) 

V (TT.zJ2a w) 2 ' 

where a w is defined by 

aw = 2l sin 2 0/42, (16) 

where l is the thickness of the crystal parallel to the 
diffraction beam. a(e~) in monochromatic-beam dif- 
fraction is given by 

f sin 27re~a 
a(e 1) = -~Q Ova 

v (~r~l a)~ ' 

where 

(17) 
(BC. 19a) 

a =  l sin 20/2. (18) 
(BC. 19b) 

The comparison of the above expressions with those of 
BC shows that a is written in the identical form by 
replacing the corresponding quantities, a~(A2) is also 

easily derived from a(e~) by using the relation A2/2 = 
el cot 0. It is easily shown that a(sl = 0) = aw(A2 = 0), 
which shows that when the Bragg condition is exactly 
fulfilled, the diffraction cross section has the same value 
at its peak point in each case. For a spherical crystal 
with radius r, aw(A2 ) is calculated by using (15): 

aw(A2) = ~ Qw flw [(7~A2fl~) z - ( rcA2flw) sin (2r, A2fl~) 

+ sin2(xA2flw)]/(r.A2flw) 4, (19) 
(BC. 29) 

where 
fl~ = 2r x 2 sin 2 0/22. (20) 

Equation (29) of BC has the same expression as the 
above formula. 

4. Primary extinction 

Primary extinction yp in white-beam diffraction is 
defined by equation (14) of BC: 

y p = - - ~  aw(d2)~o[aw(A2)l dA2. (21) 
(BC. 14) 

We now calculate yp for a perfect spherical crystal with 
radius r, in which ¢p(aw) is a function of aw r as shown 
in BC. From (19), aw(d2) is defined as 

aw(A2)= aw(O)f(rl,,), (22) 

where 

tlw= ~A2flw. (23) 

The quantity x defined in equation (35) of BC is given 
a s  

X = a w ( 0 ) r = 2  - - 7Qwawt, (24) 
(BC. 35a) 

where 

aw = ~}r x 2 sin 2 0/22. (25)  
(BC. 35b) 

• eJ 2 

x 

Fig. 2. The relationship between axes in reciprocal space/~a, x2, %/ 
and the corresponding ones in real space (~,~2,~3). ~a is a unit 
vector along the - I t  direction, x 2 is a unit vector perpendicular to 
the scattering beam in the diffraction plane, and % is one vertical 
to the diffraction plane. Projection of the crystal parallel to the 
diffraction beam onto the ~2-% plane are shown, l is the length 
of the sample parallel to the diffracted beam. 
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y ,  is then written as 
+ o o  3f yp = ~ f(rlw)~O[xf(rlw)] drlw. (26) 

_~ (BC. 36) 

The expression of this integral which is identical to that 
of equation (36) of BC is only dependent on x for a 
given value of 0, so if x given in (24) is shown to be 
identical for each case, primary extinction Yv will be 
proved to be equivalent for the two diffraction methods. 
Equation (24) can be written as 

~] aFKI2 
x =  - -  222r z. (27) 

Also, equation (35a) of BC is written in an identical 
form to (27). Therefore, we can conclude that, for 
spherical perfect crystals, primary extinction yo(x) 
becomes identical for both monochromatic- and white- 
beam diffraction. Next, we consider whether this 
equivalence is valid for a more general sample shape 
using a series expansion of ~0(a). For a convex-shape 
crystal, q)(a) can be expressed in terms of a power 
series in a as in equations (18a)and  (18b)o fBC by 

oo o - n  

- -  t ~") (28)  (o(a)= ~. (--1)" n! 
,=0 (BC. 18a) 

with 

n w . . 

t~"~ = Z (})2 v-l f dv t~ t; "-J. (29) 
,,=o v (BC. 18b) 

The symbols used have the same meanings as given in 
the glossary of BC. t ~n) does not include the variable e~, 
so this term is independent of the diffraction methods. 
The extinction factor Yv is given by using this series 
expansion in monochromatic diffraction and is ex- 
pressed as follows: 

where 

A , , -  2" (n- -  1)! (--1 ( n -  2r) "-~ (32) 
r = 0  

[for n odd, p = (n - 1)/2, for n even, p =  n/2 - 1]. 
When ew(A2) in (15) is used in white-beam diffrac- 

tion, then the final result is given by the replacement of 
Qa by Qwaw in (31). However, 

Q( t=  Qwaw = laFK/VI2 22 l, (33) 

and volume integration over l is common for the two 
methods. 

So Yv expressed in terms of a power series in Q is 
identical for both monochromatic  and white-beam 
diffraction. A very important conclusion is that the 
combined quantity Qa which is a parameter to express 
extinction is independent of the diffraction methods 
although Q and ct individually have different forms in 
monochromatic- and white-beam diffraction. 

5. S e c o n d a r y  ext inct ion  

Consider the Bragg reflection by the mosaic blocks. 
Fig. 3 shows two blocks of crystal which make a very 
small misorientation angle ~. It is assumed that for 
block 1 the Bragg condition 2 = 2d sin 0 is fulfilled for 
a particular 2 and 0. For  block 2, the same incident 
radiation is diffracted with deviation angle 2~ from the 
first one. The increase of the wavelength A2 from 2 due 
to the variation of the scattering angle is determined by 
the well known formula: 

cot 0 x ( =  A2/2. (34) 

yp 
1 oo ttn) f On+l 

f - -  der eq~(e) de1=  ,=0Z (--1)n--~.  v e (30) 

We use (17) for e(el)  which is valid for a convex 
crystal; then 

y , =  ~ ( - 1 ) " - - - -  dv I . . .  dv,+l  a n+l 
,=o n! v n+l Q 

sinZn + 2 ( n e  1 o~) 
× d e  l (he1 a) 2" + 2 

0(3 

= Z ( - i ) .  
n = 0  

, n x f f  n! v "+i dv I. . .  dv,+lAzn+l (Qa)", 

(31) 

V I  2° , , /  

Fig. 3. Bragg reflection by two mosaic blocks which make a small 
misorientation angle ~ with each other. 
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Then, a w for block 2 is written as aw(A2 + 2 cot 0 x 0 if 
we take block 1 as a standard. Therefore, the mean 
diffracting cross section for mosaic distribution W(~) is 
written as 

bw(A2) = f aw(A2 + ;t cot 0 x ~ ) W ( O  d~. (35) 

As an example of the mosaic distributions, consider the 
Lorentzian W L (0 :  

WL (0 = 2g/(1 + 4zr 2 ~2 gZ), (36) 

where g is the width parameter of the mosaic 
distribution. From (34), WL(~) is written as 

where 

WL(A2)= 2gw/[tan O(1 + 4zc2 A22 gZ~)/21, (37) 

gw = g tan 0/2. (38) 

gw expresses the nominal width of the mosaic distri- 
bution in the white-beam diffraction. With the use of 
the A2-dependent Lorentzian distribution, (37), 6w(A2 ), 
the average diffracting cross section in a mosaic 
crystal, is written as 

6w(A2)= f aw(A2 + A) WL(A)dA, (39) 

where A is the Bragg wavelength of a mosaic block 
with small misorientation angle (. This expression is the 
same as the one given in equation (21) of BC, and 
shows that A2 can be treated in the same manner as el 
of the mosaic crystal of BC. We can easily show by 
using (16) and (38) that x = 2/3Qa'F (where T is the 
mean path length through the crystals) becomes 
identical for both diffraction methods, so secondary 
extinction y,  as a function of x is identical for the two 
diffraction methods, as we have shown for yp in § 4. 

6. Discussion 

We have tried in the present paper to calculate 
extinction effects in white-beam diffraction following 
the formulation developed by BC and it has been 
shown that, within the framework of their theory, 
extinction correction in white-beam diffraction agrees 
with that in monochromatic-beam diffraction. 

Definition of x in (24) [equation (35a) of BCI shows 
that x has a value of aw(A2) at A2 = 0, when the Bragg 
condition is exactly fulfilled, so x does not depend on 
whether the parameter is el or A2. The extinction 
factor y is a function of the parameters x and 0, so we 
can say more generally that extinction does not depend 
on the method of diffraction. 

The results given by Niimura, Takahashi & Harada 
(1974) for type I and type II crystals agree with the 
present one; however, their conclusion is derived from 
some simple assumption of a for Zachariasen's theory, 
and the validity of their assumption is not fully proved. 

The extinction theories given by Zachariasen (1967) 
and Cooper & Rouse (1970) are applicable without 
any modification in white-beam diffraction, since the 
expression of x as a function of F z, 2, sin 20 and other 
quantities is invariant for the two diffraction methods. 

We thank Professor H. Iwasaki for helpful dis- 
cussions. 
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